extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4×D5).1C22 = D10.1D8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).1C2^2 | 320,206 |
(C2×C4×D5).2C22 = D10.1Q16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).2C2^2 | 320,207 |
(C2×C4×D5).3C22 = D10.SD16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).3C2^2 | 320,258 |
(C2×C4×D5).4C22 = D10.Q16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).4C2^2 | 320,264 |
(C2×C4×D5).5C22 = D5×C4.D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8+ | (C2xC4xD5).5C2^2 | 320,371 |
(C2×C4×D5).6C22 = M4(2).19D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).6C2^2 | 320,372 |
(C2×C4×D5).7C22 = D5×C4.10D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).7C2^2 | 320,377 |
(C2×C4×D5).8C22 = M4(2).21D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8+ | (C2xC4xD5).8C2^2 | 320,378 |
(C2×C4×D5).9C22 = (D4×D5)⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).9C2^2 | 320,397 |
(C2×C4×D5).10C22 = D4⋊(C4×D5) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).10C2^2 | 320,398 |
(C2×C4×D5).11C22 = D4⋊D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).11C2^2 | 320,400 |
(C2×C4×D5).12C22 = D10.12D8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).12C2^2 | 320,401 |
(C2×C4×D5).13C22 = D20.8D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).13C2^2 | 320,403 |
(C2×C4×D5).14C22 = D10.16SD16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).14C2^2 | 320,404 |
(C2×C4×D5).15C22 = C40⋊6C4⋊C2 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).15C2^2 | 320,406 |
(C2×C4×D5).16C22 = C5⋊2C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).16C2^2 | 320,407 |
(C2×C4×D5).17C22 = D4⋊3D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).17C2^2 | 320,408 |
(C2×C4×D5).18C22 = C5⋊(C8⋊2D4) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).18C2^2 | 320,409 |
(C2×C4×D5).19C22 = D4.D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).19C2^2 | 320,410 |
(C2×C4×D5).20C22 = C40⋊5C4⋊C2 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).20C2^2 | 320,411 |
(C2×C4×D5).21C22 = (Q8×D5)⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).21C2^2 | 320,429 |
(C2×C4×D5).22C22 = Q8⋊(C4×D5) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).22C2^2 | 320,430 |
(C2×C4×D5).23C22 = D10.11SD16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).23C2^2 | 320,432 |
(C2×C4×D5).24C22 = Q8⋊2D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).24C2^2 | 320,433 |
(C2×C4×D5).25C22 = D10⋊4Q16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).25C2^2 | 320,435 |
(C2×C4×D5).26C22 = D10.7Q16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).26C2^2 | 320,436 |
(C2×C4×D5).27C22 = Q8.D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).27C2^2 | 320,437 |
(C2×C4×D5).28C22 = D20⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).28C2^2 | 320,438 |
(C2×C4×D5).29C22 = C5⋊(C8⋊D4) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).29C2^2 | 320,439 |
(C2×C4×D5).30C22 = (C2×C8).D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).30C2^2 | 320,441 |
(C2×C4×D5).31C22 = D10⋊1C8.C2 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).31C2^2 | 320,442 |
(C2×C4×D5).32C22 = C5⋊2C8.D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).32C2^2 | 320,443 |
(C2×C4×D5).33C22 = C42⋊D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).33C2^2 | 320,448 |
(C2×C4×D5).34C22 = C8⋊(C4×D5) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).34C2^2 | 320,488 |
(C2×C4×D5).35C22 = D10.12SD16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).35C2^2 | 320,489 |
(C2×C4×D5).36C22 = D10.17SD16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).36C2^2 | 320,490 |
(C2×C4×D5).37C22 = C8⋊2D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).37C2^2 | 320,492 |
(C2×C4×D5).38C22 = C4.Q8⋊D5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).38C2^2 | 320,493 |
(C2×C4×D5).39C22 = C20.(C4○D4) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).39C2^2 | 320,494 |
(C2×C4×D5).40C22 = C8.2D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).40C2^2 | 320,495 |
(C2×C4×D5).41C22 = C40⋊20(C2×C4) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).41C2^2 | 320,508 |
(C2×C4×D5).42C22 = D10.13D8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).42C2^2 | 320,509 |
(C2×C4×D5).43C22 = D10.8Q16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).43C2^2 | 320,511 |
(C2×C4×D5).44C22 = C2.D8⋊D5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).44C2^2 | 320,512 |
(C2×C4×D5).45C22 = C8⋊3D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).45C2^2 | 320,513 |
(C2×C4×D5).46C22 = C2.D8⋊7D5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).46C2^2 | 320,515 |
(C2×C4×D5).47C22 = M4(2).25D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).47C2^2 | 320,520 |
(C2×C4×D5).48C22 = D20⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).48C2^2 | 320,783 |
(C2×C4×D5).49C22 = Dic10⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).49C2^2 | 320,785 |
(C2×C4×D5).50C22 = C40⋊12D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).50C2^2 | 320,786 |
(C2×C4×D5).51C22 = D10⋊6SD16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).51C2^2 | 320,796 |
(C2×C4×D5).52C22 = D10⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).52C2^2 | 320,797 |
(C2×C4×D5).53C22 = D20⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).53C2^2 | 320,799 |
(C2×C4×D5).54C22 = Dic10.16D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).54C2^2 | 320,800 |
(C2×C4×D5).55C22 = C40⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).55C2^2 | 320,801 |
(C2×C4×D5).56C22 = D10⋊5Q16 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).56C2^2 | 320,813 |
(C2×C4×D5).57C22 = D20.17D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).57C2^2 | 320,814 |
(C2×C4×D5).58C22 = C40.36D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).58C2^2 | 320,816 |
(C2×C4×D5).59C22 = C4⋊C4.7F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).59C2^2 | 320,1044 |
(C2×C4×D5).60C22 = (C2×D4).7F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).60C2^2 | 320,1113 |
(C2×C4×D5).61C22 = (C2×F5)⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | | (C2xC4xD5).61C2^2 | 320,1117 |
(C2×C4×D5).62C22 = (C2×Q8).5F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).62C2^2 | 320,1125 |
(C2×C4×D5).63C22 = (C2×F5)⋊Q8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).63C2^2 | 320,1128 |
(C2×C4×D5).64C22 = C10.2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).64C2^2 | 320,1182 |
(C2×C4×D5).65C22 = C10.52- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).65C2^2 | 320,1185 |
(C2×C4×D5).66C22 = C10.112+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).66C2^2 | 320,1186 |
(C2×C4×D5).67C22 = C42.91D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).67C2^2 | 320,1195 |
(C2×C4×D5).68C22 = C42.92D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).68C2^2 | 320,1198 |
(C2×C4×D5).69C22 = C42.94D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).69C2^2 | 320,1201 |
(C2×C4×D5).70C22 = C42.95D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).70C2^2 | 320,1202 |
(C2×C4×D5).71C22 = C42.98D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).71C2^2 | 320,1205 |
(C2×C4×D5).72C22 = C42.108D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).72C2^2 | 320,1218 |
(C2×C4×D5).73C22 = D20⋊24D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).73C2^2 | 320,1223 |
(C2×C4×D5).74C22 = D4⋊6D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).74C2^2 | 320,1227 |
(C2×C4×D5).75C22 = C42.113D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).75C2^2 | 320,1230 |
(C2×C4×D5).76C22 = C42.115D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).76C2^2 | 320,1233 |
(C2×C4×D5).77C22 = C42.117D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).77C2^2 | 320,1235 |
(C2×C4×D5).78C22 = C42.125D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).78C2^2 | 320,1244 |
(C2×C4×D5).79C22 = C42.126D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).79C2^2 | 320,1246 |
(C2×C4×D5).80C22 = Q8×D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).80C2^2 | 320,1247 |
(C2×C4×D5).81C22 = Q8⋊5D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).81C2^2 | 320,1248 |
(C2×C4×D5).82C22 = Q8⋊6D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).82C2^2 | 320,1249 |
(C2×C4×D5).83C22 = D20⋊10Q8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).83C2^2 | 320,1251 |
(C2×C4×D5).84C22 = C42.132D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).84C2^2 | 320,1253 |
(C2×C4×D5).85C22 = C42.133D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).85C2^2 | 320,1254 |
(C2×C4×D5).86C22 = C42.134D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).86C2^2 | 320,1255 |
(C2×C4×D5).87C22 = C42.135D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).87C2^2 | 320,1256 |
(C2×C4×D5).88C22 = C20⋊(C4○D4) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).88C2^2 | 320,1268 |
(C2×C4×D5).89C22 = C10.682- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).89C2^2 | 320,1269 |
(C2×C4×D5).90C22 = Dic10⋊19D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).90C2^2 | 320,1270 |
(C2×C4×D5).91C22 = Dic10⋊20D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).91C2^2 | 320,1271 |
(C2×C4×D5).92C22 = C10.392+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).92C2^2 | 320,1280 |
(C2×C4×D5).93C22 = C10.732- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).93C2^2 | 320,1283 |
(C2×C4×D5).94C22 = C10.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).94C2^2 | 320,1285 |
(C2×C4×D5).95C22 = C10.432+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).95C2^2 | 320,1286 |
(C2×C4×D5).96C22 = C10.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).96C2^2 | 320,1288 |
(C2×C4×D5).97C22 = C10.1152+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).97C2^2 | 320,1290 |
(C2×C4×D5).98C22 = C10.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).98C2^2 | 320,1291 |
(C2×C4×D5).99C22 = C10.742- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).99C2^2 | 320,1293 |
(C2×C4×D5).100C22 = C22⋊Q8⋊25D5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).100C2^2 | 320,1296 |
(C2×C4×D5).101C22 = D5×C22⋊Q8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).101C2^2 | 320,1298 |
(C2×C4×D5).102C22 = C10.162- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).102C2^2 | 320,1300 |
(C2×C4×D5).103C22 = C10.172- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).103C2^2 | 320,1301 |
(C2×C4×D5).104C22 = D20⋊22D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).104C2^2 | 320,1303 |
(C2×C4×D5).105C22 = Dic10⋊21D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).105C2^2 | 320,1304 |
(C2×C4×D5).106C22 = Dic10⋊22D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).106C2^2 | 320,1305 |
(C2×C4×D5).107C22 = C10.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).107C2^2 | 320,1306 |
(C2×C4×D5).108C22 = C10.1182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).108C2^2 | 320,1307 |
(C2×C4×D5).109C22 = C10.522+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).109C2^2 | 320,1308 |
(C2×C4×D5).110C22 = C10.212- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).110C2^2 | 320,1311 |
(C2×C4×D5).111C22 = C10.232- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).111C2^2 | 320,1313 |
(C2×C4×D5).112C22 = C10.772- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).112C2^2 | 320,1314 |
(C2×C4×D5).113C22 = C10.242- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).113C2^2 | 320,1315 |
(C2×C4×D5).114C22 = C10.572+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).114C2^2 | 320,1317 |
(C2×C4×D5).115C22 = C10.582+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).115C2^2 | 320,1318 |
(C2×C4×D5).116C22 = C10.262- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).116C2^2 | 320,1319 |
(C2×C4×D5).117C22 = C10.792- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).117C2^2 | 320,1320 |
(C2×C4×D5).118C22 = C4⋊C4.197D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).118C2^2 | 320,1321 |
(C2×C4×D5).119C22 = C10.822- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).119C2^2 | 320,1327 |
(C2×C4×D5).120C22 = C10.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).120C2^2 | 320,1330 |
(C2×C4×D5).121C22 = C10.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).121C2^2 | 320,1331 |
(C2×C4×D5).122C22 = C10.632+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).122C2^2 | 320,1332 |
(C2×C4×D5).123C22 = C10.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).123C2^2 | 320,1333 |
(C2×C4×D5).124C22 = C10.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).124C2^2 | 320,1335 |
(C2×C4×D5).125C22 = C10.852- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).125C2^2 | 320,1337 |
(C2×C4×D5).126C22 = C10.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).126C2^2 | 320,1339 |
(C2×C4×D5).127C22 = C42.233D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).127C2^2 | 320,1340 |
(C2×C4×D5).128C22 = C42.137D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).128C2^2 | 320,1341 |
(C2×C4×D5).129C22 = C42.141D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).129C2^2 | 320,1347 |
(C2×C4×D5).130C22 = Dic10⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).130C2^2 | 320,1349 |
(C2×C4×D5).131C22 = C42.144D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).131C2^2 | 320,1354 |
(C2×C4×D5).132C22 = C42.145D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).132C2^2 | 320,1356 |
(C2×C4×D5).133C22 = C42.148D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).133C2^2 | 320,1361 |
(C2×C4×D5).134C22 = C42.237D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).134C2^2 | 320,1363 |
(C2×C4×D5).135C22 = C42.150D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).135C2^2 | 320,1364 |
(C2×C4×D5).136C22 = C42.151D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).136C2^2 | 320,1365 |
(C2×C4×D5).137C22 = C42.152D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).137C2^2 | 320,1366 |
(C2×C4×D5).138C22 = C42.153D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).138C2^2 | 320,1367 |
(C2×C4×D5).139C22 = C42.154D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).139C2^2 | 320,1368 |
(C2×C4×D5).140C22 = C42.155D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).140C2^2 | 320,1369 |
(C2×C4×D5).141C22 = C42.156D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).141C2^2 | 320,1370 |
(C2×C4×D5).142C22 = C42.157D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).142C2^2 | 320,1371 |
(C2×C4×D5).143C22 = C42.158D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).143C2^2 | 320,1372 |
(C2×C4×D5).144C22 = C42.163D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).144C2^2 | 320,1381 |
(C2×C4×D5).145C22 = C42.164D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).145C2^2 | 320,1382 |
(C2×C4×D5).146C22 = C42.165D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).146C2^2 | 320,1384 |
(C2×C4×D5).147C22 = C42⋊26D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).147C2^2 | 320,1387 |
(C2×C4×D5).148C22 = Dic10⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).148C2^2 | 320,1390 |
(C2×C4×D5).149C22 = C42.168D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).149C2^2 | 320,1391 |
(C2×C4×D5).150C22 = D5×C4⋊Q8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).150C2^2 | 320,1395 |
(C2×C4×D5).151C22 = C42.171D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).151C2^2 | 320,1396 |
(C2×C4×D5).152C22 = C42.240D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).152C2^2 | 320,1397 |
(C2×C4×D5).153C22 = D20⋊12D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).153C2^2 | 320,1398 |
(C2×C4×D5).154C22 = D20⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).154C2^2 | 320,1399 |
(C2×C4×D5).155C22 = C42.174D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).155C2^2 | 320,1401 |
(C2×C4×D5).156C22 = D20⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).156C2^2 | 320,1402 |
(C2×C4×D5).157C22 = C42.176D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).157C2^2 | 320,1403 |
(C2×C4×D5).158C22 = C42.177D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).158C2^2 | 320,1404 |
(C2×C4×D5).159C22 = C42.178D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).159C2^2 | 320,1405 |
(C2×C4×D5).160C22 = C42.179D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).160C2^2 | 320,1406 |
(C2×C4×D5).161C22 = C42.180D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).161C2^2 | 320,1407 |
(C2×C4×D5).162C22 = C40.47C23 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).162C2^2 | 320,1417 |
(C2×C4×D5).163C22 = C20.72C24 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).163C2^2 | 320,1422 |
(C2×C4×D5).164C22 = C2×D8⋊D5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).164C2^2 | 320,1427 |
(C2×C4×D5).165C22 = C2×D40⋊C2 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).165C2^2 | 320,1431 |
(C2×C4×D5).166C22 = C2×SD16⋊D5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).166C2^2 | 320,1432 |
(C2×C4×D5).167C22 = C2×Q16⋊D5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).167C2^2 | 320,1436 |
(C2×C4×D5).168C22 = Q16⋊D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).168C2^2 | 320,1440 |
(C2×C4×D5).169C22 = D5×C8⋊C22 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8+ | (C2xC4xD5).169C2^2 | 320,1444 |
(C2×C4×D5).170C22 = SD16⋊D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).170C2^2 | 320,1445 |
(C2×C4×D5).171C22 = D5×C8.C22 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).171C2^2 | 320,1448 |
(C2×C4×D5).172C22 = D40⋊C22 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8+ | (C2xC4xD5).172C2^2 | 320,1449 |
(C2×C4×D5).173C22 = Q8×C5⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).173C2^2 | 320,1487 |
(C2×C4×D5).174C22 = C10.442- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).174C2^2 | 320,1488 |
(C2×C4×D5).175C22 = C10.452- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).175C2^2 | 320,1489 |
(C2×C4×D5).176C22 = C10.1042- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).176C2^2 | 320,1496 |
(C2×C4×D5).177C22 = C10.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).177C2^2 | 320,1501 |
(C2×C4×D5).178C22 = C10.1072- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).178C2^2 | 320,1503 |
(C2×C4×D5).179C22 = C10.1472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).179C2^2 | 320,1505 |
(C2×C4×D5).180C22 = C10.1482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).180C2^2 | 320,1506 |
(C2×C4×D5).181C22 = C2×Q8.10D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).181C2^2 | 320,1617 |
(C2×C4×D5).182C22 = C2×D4.10D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).182C2^2 | 320,1620 |
(C2×C4×D5).183C22 = D5×2- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).183C2^2 | 320,1624 |
(C2×C4×D5).184C22 = D10.18D8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).184C2^2 | 320,212 |
(C2×C4×D5).185C22 = C20.C42 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).185C2^2 | 320,213 |
(C2×C4×D5).186C22 = M4(2)⋊F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8 | (C2xC4xD5).186C2^2 | 320,237 |
(C2×C4×D5).187C22 = M4(2)⋊3F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8 | (C2xC4xD5).187C2^2 | 320,238 |
(C2×C4×D5).188C22 = M4(2).F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8 | (C2xC4xD5).188C2^2 | 320,239 |
(C2×C4×D5).189C22 = M4(2)⋊4F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8 | (C2xC4xD5).189C2^2 | 320,240 |
(C2×C4×D5).190C22 = D10.C42 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).190C2^2 | 320,1039 |
(C2×C4×D5).191C22 = C4⋊C4.9F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).191C2^2 | 320,1046 |
(C2×C4×D5).192C22 = M4(2)×F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8 | (C2xC4xD5).192C2^2 | 320,1064 |
(C2×C4×D5).193C22 = M4(2)⋊1F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8 | (C2xC4xD5).193C2^2 | 320,1065 |
(C2×C4×D5).194C22 = M4(2)⋊5F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8 | (C2xC4xD5).194C2^2 | 320,1066 |
(C2×C4×D5).195C22 = M4(2).1F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8 | (C2xC4xD5).195C2^2 | 320,1067 |
(C2×C4×D5).196C22 = C2×D20⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).196C2^2 | 320,1104 |
(C2×C4×D5).197C22 = (D4×C10)⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8+ | (C2xC4xD5).197C2^2 | 320,1105 |
(C2×C4×D5).198C22 = C2×D4⋊F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).198C2^2 | 320,1106 |
(C2×C4×D5).199C22 = (C2×D4)⋊6F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).199C2^2 | 320,1107 |
(C2×C4×D5).200C22 = (C2×D4)⋊8F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).200C2^2 | 320,1109 |
(C2×C4×D5).201C22 = (C2×D4).8F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).201C2^2 | 320,1114 |
(C2×C4×D5).202C22 = D5⋊(C4.D4) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8+ | (C2xC4xD5).202C2^2 | 320,1116 |
(C2×C4×D5).203C22 = C2.(D4×F5) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).203C2^2 | 320,1118 |
(C2×C4×D5).204C22 = C2×Q8⋊F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).204C2^2 | 320,1119 |
(C2×C4×D5).205C22 = (C2×Q8)⋊4F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).205C2^2 | 320,1120 |
(C2×C4×D5).206C22 = C2×Q8⋊2F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).206C2^2 | 320,1121 |
(C2×C4×D5).207C22 = (C2×Q8)⋊6F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8+ | (C2xC4xD5).207C2^2 | 320,1122 |
(C2×C4×D5).208C22 = (C2×Q8)⋊7F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8+ | (C2xC4xD5).208C2^2 | 320,1123 |
(C2×C4×D5).209C22 = (C2×Q8).7F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).209C2^2 | 320,1127 |
(C2×C4×D5).210C22 = D5⋊C4≀C2 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8 | (C2xC4xD5).210C2^2 | 320,1130 |
(C2×C4×D5).211C22 = C4○D4⋊F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8 | (C2xC4xD5).211C2^2 | 320,1131 |
(C2×C4×D5).212C22 = C4○D20⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8 | (C2xC4xD5).212C2^2 | 320,1132 |
(C2×C4×D5).213C22 = D4⋊F5⋊C2 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8 | (C2xC4xD5).213C2^2 | 320,1133 |
(C2×C4×D5).214C22 = C2×D4.F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).214C2^2 | 320,1593 |
(C2×C4×D5).215C22 = Dic5.C24 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).215C2^2 | 320,1594 |
(C2×C4×D5).216C22 = C2×D4×F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | | (C2xC4xD5).216C2^2 | 320,1595 |
(C2×C4×D5).217C22 = D10.C24 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8+ | (C2xC4xD5).217C2^2 | 320,1596 |
(C2×C4×D5).218C22 = C2×Q8.F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).218C2^2 | 320,1597 |
(C2×C4×D5).219C22 = Dic5.20C24 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8+ | (C2xC4xD5).219C2^2 | 320,1598 |
(C2×C4×D5).220C22 = C2×Q8×F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).220C2^2 | 320,1599 |
(C2×C4×D5).221C22 = D5.2- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8- | (C2xC4xD5).221C2^2 | 320,1600 |
(C2×C4×D5).222C22 = Dic5.21C24 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8 | (C2xC4xD5).222C2^2 | 320,1601 |
(C2×C4×D5).223C22 = Dic5.22C24 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 8 | (C2xC4xD5).223C2^2 | 320,1602 |
(C2×C4×D5).224C22 = C4○D4×F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8 | (C2xC4xD5).224C2^2 | 320,1603 |
(C2×C4×D5).225C22 = D5.2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | 8 | (C2xC4xD5).225C2^2 | 320,1604 |
(C2×C4×D5).226C22 = C8⋊6D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).226C2^2 | 320,315 |
(C2×C4×D5).227C22 = C42.243D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).227C2^2 | 320,317 |
(C2×C4×D5).228C22 = C8⋊9D20 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).228C2^2 | 320,333 |
(C2×C4×D5).229C22 = C42.185D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).229C2^2 | 320,336 |
(C2×C4×D5).230C22 = Dic5⋊2M4(2) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).230C2^2 | 320,356 |
(C2×C4×D5).231C22 = C5⋊2C8⋊26D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).231C2^2 | 320,357 |
(C2×C4×D5).232C22 = C20⋊6M4(2) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).232C2^2 | 320,465 |
(C2×C4×D5).233C22 = C42.31D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).233C2^2 | 320,467 |
(C2×C4×D5).234C22 = (C22×C8)⋊D5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).234C2^2 | 320,737 |
(C2×C4×D5).235C22 = C40⋊32D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).235C2^2 | 320,738 |
(C2×C4×D5).236C22 = C40⋊18D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).236C2^2 | 320,755 |
(C2×C4×D5).237C22 = C4.89(C2×D20) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).237C2^2 | 320,756 |
(C2×C4×D5).238C22 = C42.276D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).238C2^2 | 320,1149 |
(C2×C4×D5).239C22 = C42.277D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).239C2^2 | 320,1151 |
(C2×C4×D5).240C22 = C10.82+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).240C2^2 | 320,1176 |
(C2×C4×D5).241C22 = C10.2- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).241C2^2 | 320,1179 |
(C2×C4×D5).242C22 = C10.102+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).242C2^2 | 320,1183 |
(C2×C4×D5).243C22 = C10.62- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).243C2^2 | 320,1187 |
(C2×C4×D5).244C22 = C42.96D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).244C2^2 | 320,1203 |
(C2×C4×D5).245C22 = C42.97D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).245C2^2 | 320,1204 |
(C2×C4×D5).246C22 = C42.99D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).246C2^2 | 320,1206 |
(C2×C4×D5).247C22 = C42.100D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).247C2^2 | 320,1207 |
(C2×C4×D5).248C22 = C42.102D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).248C2^2 | 320,1210 |
(C2×C4×D5).249C22 = C42.104D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).249C2^2 | 320,1212 |
(C2×C4×D5).250C22 = Dic10⋊23D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).250C2^2 | 320,1224 |
(C2×C4×D5).251C22 = Dic10⋊24D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).251C2^2 | 320,1225 |
(C2×C4×D5).252C22 = C42⋊16D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).252C2^2 | 320,1228 |
(C2×C4×D5).253C22 = C42.114D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).253C2^2 | 320,1231 |
(C2×C4×D5).254C22 = C42.116D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).254C2^2 | 320,1234 |
(C2×C4×D5).255C22 = C42.118D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).255C2^2 | 320,1236 |
(C2×C4×D5).256C22 = C42.119D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).256C2^2 | 320,1237 |
(C2×C4×D5).257C22 = C42.122D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).257C2^2 | 320,1240 |
(C2×C4×D5).258C22 = C42.136D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).258C2^2 | 320,1257 |
(C2×C4×D5).259C22 = C10.342+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).259C2^2 | 320,1273 |
(C2×C4×D5).260C22 = C10.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).260C2^2 | 320,1287 |
(C2×C4×D5).261C22 = C10.202- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).261C2^2 | 320,1310 |
(C2×C4×D5).262C22 = C10.222- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).262C2^2 | 320,1312 |
(C2×C4×D5).263C22 = C10.842- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).263C2^2 | 320,1334 |
(C2×C4×D5).264C22 = C10.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).264C2^2 | 320,1336 |
(C2×C4×D5).265C22 = C42.138D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).265C2^2 | 320,1342 |
(C2×C4×D5).266C22 = C42⋊21D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).266C2^2 | 320,1351 |
(C2×C4×D5).267C22 = C42.143D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).267C2^2 | 320,1353 |
(C2×C4×D5).268C22 = D20⋊7Q8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).268C2^2 | 320,1362 |
(C2×C4×D5).269C22 = C42.160D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).269C2^2 | 320,1374 |
(C2×C4×D5).270C22 = C42.161D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).270C2^2 | 320,1379 |
(C2×C4×D5).271C22 = C42.162D10 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).271C2^2 | 320,1380 |
(C2×C4×D5).272C22 = (C2×C20)⋊17D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).272C2^2 | 320,1504 |
(C2×C4×D5).273C22 = C5⋊C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).273C2^2 | 320,1031 |
(C2×C4×D5).274C22 = Dic5⋊M4(2) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).274C2^2 | 320,1033 |
(C2×C4×D5).275C22 = D10⋊(C4⋊C4) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | | (C2xC4xD5).275C2^2 | 320,1037 |
(C2×C4×D5).276C22 = C10.(C4×D4) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).276C2^2 | 320,1038 |
(C2×C4×D5).277C22 = C20⋊M4(2) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).277C2^2 | 320,1043 |
(C2×C4×D5).278C22 = C4⋊C4⋊5F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).278C2^2 | 320,1049 |
(C2×C4×D5).279C22 = C20⋊(C4⋊C4) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).279C2^2 | 320,1050 |
(C2×C4×D5).280C22 = C42⋊3F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).280C2^2 | 320,201 |
(C2×C4×D5).281C22 = (C2×C8)⋊F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).281C2^2 | 320,232 |
(C2×C4×D5).282C22 = C20.24C42 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).282C2^2 | 320,233 |
(C2×C4×D5).283C22 = C20.25C42 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).283C2^2 | 320,235 |
(C2×C4×D5).284C22 = C23⋊F5⋊5C2 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).284C2^2 | 320,1083 |
(C2×C4×D5).285C22 = (C4×D5).D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).285C2^2 | 320,1099 |
(C2×C4×D5).286C22 = C5⋊C8⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).286C2^2 | 320,1030 |
(C2×C4×D5).287C22 = D10⋊M4(2) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).287C2^2 | 320,1032 |
(C2×C4×D5).288C22 = C22⋊C4×F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 40 | | (C2xC4xD5).288C2^2 | 320,1036 |
(C2×C4×D5).289C22 = D20⋊2C8 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).289C2^2 | 320,1040 |
(C2×C4×D5).290C22 = D10⋊2M4(2) | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).290C2^2 | 320,1042 |
(C2×C4×D5).291C22 = C4⋊C4×F5 | φ: C22/C1 → C22 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).291C2^2 | 320,1048 |
(C2×C4×D5).292C22 = D5×D4⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).292C2^2 | 320,396 |
(C2×C4×D5).293C22 = D4⋊2D5⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).293C2^2 | 320,399 |
(C2×C4×D5).294C22 = D10⋊D8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).294C2^2 | 320,402 |
(C2×C4×D5).295C22 = D10⋊SD16 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).295C2^2 | 320,405 |
(C2×C4×D5).296C22 = D5×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).296C2^2 | 320,428 |
(C2×C4×D5).297C22 = Q8⋊2D5⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).297C2^2 | 320,431 |
(C2×C4×D5).298C22 = D10⋊2SD16 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).298C2^2 | 320,434 |
(C2×C4×D5).299C22 = D10⋊Q16 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).299C2^2 | 320,440 |
(C2×C4×D5).300C22 = D5×C4≀C2 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 40 | 4 | (C2xC4xD5).300C2^2 | 320,447 |
(C2×C4×D5).301C22 = D5×C4.Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).301C2^2 | 320,486 |
(C2×C4×D5).302C22 = (C8×D5)⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).302C2^2 | 320,487 |
(C2×C4×D5).303C22 = C8⋊8D20 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).303C2^2 | 320,491 |
(C2×C4×D5).304C22 = D5×C2.D8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).304C2^2 | 320,506 |
(C2×C4×D5).305C22 = C8.27(C4×D5) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).305C2^2 | 320,507 |
(C2×C4×D5).306C22 = C8⋊7D20 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).306C2^2 | 320,510 |
(C2×C4×D5).307C22 = D10⋊2Q16 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).307C2^2 | 320,514 |
(C2×C4×D5).308C22 = D5×C8.C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).308C2^2 | 320,519 |
(C2×C4×D5).309C22 = C40⋊6D4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).309C2^2 | 320,784 |
(C2×C4×D5).310C22 = C40⋊14D4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).310C2^2 | 320,798 |
(C2×C4×D5).311C22 = D10⋊3Q16 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).311C2^2 | 320,815 |
(C2×C4×D5).312C22 = C2×D5×C4⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).312C2^2 | 320,1173 |
(C2×C4×D5).313C22 = C2×C4⋊C4⋊7D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).313C2^2 | 320,1174 |
(C2×C4×D5).314C22 = C2×D10⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).314C2^2 | 320,1181 |
(C2×C4×D5).315C22 = D5×C42⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).315C2^2 | 320,1192 |
(C2×C4×D5).316C22 = C4×Q8⋊2D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).316C2^2 | 320,1245 |
(C2×C4×D5).317C22 = C4⋊C4⋊21D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).317C2^2 | 320,1278 |
(C2×C4×D5).318C22 = D5×C42.C2 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).318C2^2 | 320,1359 |
(C2×C4×D5).319C22 = C42.236D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).319C2^2 | 320,1360 |
(C2×C4×D5).320C22 = D5×C4⋊1D4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).320C2^2 | 320,1386 |
(C2×C4×D5).321C22 = C42.238D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).321C2^2 | 320,1388 |
(C2×C4×D5).322C22 = C42.241D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).322C2^2 | 320,1400 |
(C2×C4×D5).323C22 = C2×D5×M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).323C2^2 | 320,1415 |
(C2×C4×D5).324C22 = D5×C8○D4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).324C2^2 | 320,1421 |
(C2×C4×D5).325C22 = C2×D5×D8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).325C2^2 | 320,1426 |
(C2×C4×D5).326C22 = C2×D8⋊3D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).326C2^2 | 320,1428 |
(C2×C4×D5).327C22 = C2×D5×SD16 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).327C2^2 | 320,1430 |
(C2×C4×D5).328C22 = C2×SD16⋊3D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).328C2^2 | 320,1433 |
(C2×C4×D5).329C22 = C2×D5×Q16 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).329C2^2 | 320,1435 |
(C2×C4×D5).330C22 = C2×Q8.D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).330C2^2 | 320,1437 |
(C2×C4×D5).331C22 = D5×C4○D8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).331C2^2 | 320,1439 |
(C2×C4×D5).332C22 = C2×D10⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).332C2^2 | 320,1485 |
(C2×C4×D5).333C22 = (C2×C20)⋊15D4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).333C2^2 | 320,1500 |
(C2×C4×D5).334C22 = C22×Q8×D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).334C2^2 | 320,1615 |
(C2×C4×D5).335C22 = C42.282D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).335C2^2 | 320,312 |
(C2×C4×D5).336C22 = C8×D20 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).336C2^2 | 320,313 |
(C2×C4×D5).337C22 = C4×C8⋊D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).337C2^2 | 320,314 |
(C2×C4×D5).338C22 = D10.5C42 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).338C2^2 | 320,316 |
(C2×C4×D5).339C22 = C42.182D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).339C2^2 | 320,332 |
(C2×C4×D5).340C22 = D10.6C42 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).340C2^2 | 320,334 |
(C2×C4×D5).341C22 = D10.7C42 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).341C2^2 | 320,335 |
(C2×C4×D5).342C22 = C5⋊5(C8×D4) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).342C2^2 | 320,352 |
(C2×C4×D5).343C22 = D10⋊7M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).343C2^2 | 320,353 |
(C2×C4×D5).344C22 = C22⋊C8⋊D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).344C2^2 | 320,354 |
(C2×C4×D5).345C22 = D10⋊4M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).345C2^2 | 320,355 |
(C2×C4×D5).346C22 = C42.200D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).346C2^2 | 320,460 |
(C2×C4×D5).347C22 = D20⋊5C8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).347C2^2 | 320,461 |
(C2×C4×D5).348C22 = C42.202D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).348C2^2 | 320,462 |
(C2×C4×D5).349C22 = D10⋊5M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).349C2^2 | 320,463 |
(C2×C4×D5).350C22 = C20⋊5M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).350C2^2 | 320,464 |
(C2×C4×D5).351C22 = C42.30D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).351C2^2 | 320,466 |
(C2×C4×D5).352C22 = C2×D10⋊1C8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).352C2^2 | 320,735 |
(C2×C4×D5).353C22 = C8×C5⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).353C2^2 | 320,736 |
(C2×C4×D5).354C22 = D10⋊8M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).354C2^2 | 320,753 |
(C2×C4×D5).355C22 = C40⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).355C2^2 | 320,754 |
(C2×C4×D5).356C22 = C42.6F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).356C2^2 | 320,1016 |
(C2×C4×D5).357C22 = C42.12F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).357C2^2 | 320,1018 |
(C2×C4×D5).358C22 = C42.15F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).358C2^2 | 320,1021 |
(C2×C4×D5).359C22 = C42.7F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).359C2^2 | 320,1022 |
(C2×C4×D5).360C22 = C42⋊4F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).360C2^2 | 320,1024 |
(C2×C4×D5).361C22 = C42⋊9F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).361C2^2 | 320,1027 |
(C2×C4×D5).362C22 = C42⋊5F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).362C2^2 | 320,1028 |
(C2×C4×D5).363C22 = C2×D10⋊C8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).363C2^2 | 320,1089 |
(C2×C4×D5).364C22 = D10⋊9M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).364C2^2 | 320,1093 |
(C2×C4×D5).365C22 = C2×D10.3Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).365C2^2 | 320,1100 |
(C2×C4×D5).366C22 = C4×C22⋊F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).366C2^2 | 320,1101 |
(C2×C4×D5).367C22 = (C22×C4)⋊7F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).367C2^2 | 320,1102 |
(C2×C4×D5).368C22 = D10⋊6(C4⋊C4) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).368C2^2 | 320,1103 |
(C2×C4×D5).369C22 = C2×C42⋊D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).369C2^2 | 320,1144 |
(C2×C4×D5).370C22 = C4×C4○D20 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).370C2^2 | 320,1146 |
(C2×C4×D5).371C22 = C2×D10⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).371C2^2 | 320,1180 |
(C2×C4×D5).372C22 = C42.188D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).372C2^2 | 320,1194 |
(C2×C4×D5).373C22 = C42.93D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).373C2^2 | 320,1200 |
(C2×C4×D5).374C22 = C4×D4⋊2D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).374C2^2 | 320,1208 |
(C2×C4×D5).375C22 = C42.228D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).375C2^2 | 320,1220 |
(C2×C4×D5).376C22 = C42.229D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).376C2^2 | 320,1229 |
(C2×C4×D5).377C22 = C4×Q8×D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).377C2^2 | 320,1243 |
(C2×C4×D5).378C22 = C42.232D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).378C2^2 | 320,1250 |
(C2×C4×D5).379C22 = C42.131D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).379C2^2 | 320,1252 |
(C2×C4×D5).380C22 = D5×C4.4D4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).380C2^2 | 320,1345 |
(C2×C4×D5).381C22 = C42.234D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).381C2^2 | 320,1352 |
(C2×C4×D5).382C22 = D5×C42⋊2C2 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).382C2^2 | 320,1375 |
(C2×C4×D5).383C22 = C42.189D10 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).383C2^2 | 320,1378 |
(C2×C4×D5).384C22 = C22×C8⋊D5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).384C2^2 | 320,1409 |
(C2×C4×D5).385C22 = C2×D20.3C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).385C2^2 | 320,1410 |
(C2×C4×D5).386C22 = C2×D20.2C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).386C2^2 | 320,1416 |
(C2×C4×D5).387C22 = D10.10D8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).387C2^2 | 320,231 |
(C2×C4×D5).388C22 = C20.10C42 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).388C2^2 | 320,234 |
(C2×C4×D5).389C22 = C4×C4.F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).389C2^2 | 320,1015 |
(C2×C4×D5).390C22 = C20⋊3M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).390C2^2 | 320,1019 |
(C2×C4×D5).391C22 = C42.14F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).391C2^2 | 320,1020 |
(C2×C4×D5).392C22 = C4×C4⋊F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).392C2^2 | 320,1025 |
(C2×C4×D5).393C22 = C42⋊8F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).393C2^2 | 320,1026 |
(C2×C4×D5).394C22 = C2×C40⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).394C2^2 | 320,1057 |
(C2×C4×D5).395C22 = C2×D5.D8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).395C2^2 | 320,1058 |
(C2×C4×D5).396C22 = C2×C40.C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).396C2^2 | 320,1060 |
(C2×C4×D5).397C22 = C2×D10.Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).397C2^2 | 320,1061 |
(C2×C4×D5).398C22 = D10⋊10M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).398C2^2 | 320,1094 |
(C2×C4×D5).399C22 = C22×C4.F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).399C2^2 | 320,1588 |
(C2×C4×D5).400C22 = C22×C4⋊F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).400C2^2 | 320,1591 |
(C2×C4×D5).401C22 = C42⋊6F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 40 | 4 | (C2xC4xD5).401C2^2 | 320,200 |
(C2×C4×D5).402C22 = C20.12C42 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).402C2^2 | 320,1056 |
(C2×C4×D5).403C22 = (C2×C8)⋊6F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).403C2^2 | 320,1059 |
(C2×C4×D5).404C22 = (C8×D5).C4 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | 4 | (C2xC4xD5).404C2^2 | 320,1062 |
(C2×C4×D5).405C22 = C2×D5⋊M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).405C2^2 | 320,1589 |
(C2×C4×D5).406C22 = C2×D10.C23 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).406C2^2 | 320,1592 |
(C2×C4×D5).407C22 = D10.3M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).407C2^2 | 320,230 |
(C2×C4×D5).408C22 = C4×D5⋊C8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).408C2^2 | 320,1013 |
(C2×C4×D5).409C22 = C42.5F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).409C2^2 | 320,1014 |
(C2×C4×D5).410C22 = C42.11F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).410C2^2 | 320,1017 |
(C2×C4×D5).411C22 = C42×F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).411C2^2 | 320,1023 |
(C2×C4×D5).412C22 = C2×C8×F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).412C2^2 | 320,1054 |
(C2×C4×D5).413C22 = C2×C8⋊F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).413C2^2 | 320,1055 |
(C2×C4×D5).414C22 = D10.11M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).414C2^2 | 320,1091 |
(C2×C4×D5).415C22 = C22×D5⋊C8 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 160 | | (C2xC4xD5).415C2^2 | 320,1587 |
(C2×C4×D5).416C22 = C22×C4×F5 | φ: C22/C2 → C2 ⊆ Out C2×C4×D5 | 80 | | (C2xC4xD5).416C2^2 | 320,1590 |
(C2×C4×D5).417C22 = D5×C4×C8 | φ: trivial image | 160 | | (C2xC4xD5).417C2^2 | 320,311 |
(C2×C4×D5).418C22 = D5×C8⋊C4 | φ: trivial image | 160 | | (C2xC4xD5).418C2^2 | 320,331 |
(C2×C4×D5).419C22 = D5×C22⋊C8 | φ: trivial image | 80 | | (C2xC4xD5).419C2^2 | 320,351 |
(C2×C4×D5).420C22 = D5×C4⋊C8 | φ: trivial image | 160 | | (C2xC4xD5).420C2^2 | 320,459 |
(C2×C4×D5).421C22 = D5×C2×C42 | φ: trivial image | 160 | | (C2xC4xD5).421C2^2 | 320,1143 |
(C2×C4×D5).422C22 = D5×C22×C8 | φ: trivial image | 160 | | (C2xC4xD5).422C2^2 | 320,1408 |